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Abstract— In the Space domain the High Level Architecture 

(HLA) is one of the reference standard for Distributed 

Simulation. However, for the different organization involved in 

the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA) and 

their industrial partners, it is difficult to implement HLA 

simulators (called Federates) able to interact and interoperate in 

the context of a distributed HLA simulation (called Federation). 

The lack of a common FOM (Federation Object Model) for the 

Space domain is one of the main reasons that precludes a-priori 

interoperability between heterogeneous federates. To fill this lack 

a Product Development Group (PDG) has been recently activated 

in the Simulation Interoperability Standards Organization (SISO) 

with the aim to provide a Space Reference FOM (SRFOM) for 

international collaboration on Space systems simulations. 

Members of the PDG come from several countries and contribute 

experiences from projects within NASA, ESA and other 

organizations. Participants represent government, academia and 

industry. The paper presents an overview of the ongoing Space 

Reference FOM standardization initiative by focusing on the 

solution provided for managing the execution of an SRFOM-

based Federation.  

Keywords— Space, Interoperability, High Level Architecture, 

Federation Object Model. 

I. INTRODUCTION 

The space domain is characterized by the high cost of real 
equipment, dangerous scenarios, scarce training opportunities, 
and emergency operations. As a consequence, simulation has 
always represented a key technology exploited for supporting 
space mission analysis, design and operation. In particular, due 
to the increasing complexity of modern space missions, which 
result from the cooperation of several public and private 
organizations of different nations, distributed simulation is 
becoming a fundamental asset as it allows for the combination 
of heterogeneous simulation models (made by the same or 
different organizations), running simulators from different 
locations, and promotion of scalability, modularization and 
usability (see [1], [6] for examples). In the Space domain, one 
of the most popular standards for implementing distributed 
simulations is the High Level Architecture (HLA) [3], an IEEE 
Standard for Modeling and Simulation (M&S). However, it is 
difficult to implement HLA simulators (called Federates) able 

to interact and interoperate in the context of a distributed HLA 
simulation (called Federation). The lack of a common FOM 
(Federation Object Model) [3] for the Space domain [4], is one 
of the main reasons that precludes a-priori interoperability 
between heterogeneous federates, developed by the different 
organizations involved in the Space domain (e.g. NASA, ESA, 
Roscosmos, and JAXA) and their industrial partners. 

To fill this void, a Product Development Group (PDG) has 
been recently activated in the Simulation Interoperability 
Standards Organization (SISO) with the aim to provide a 
Space Reference FOM (SRFOM) for international 
collaboration on Space systems simulations [8]. Members of 
the PDG come from several countries, represent government, 
academia and industry, and contribute experiences from 
projects within NASA, ESA and other organizations. 

The standard consists of two parts: (i) the SISO Standard 
for the Space Reference FOM Federation Agreement. This is a 
natural language, human readable overview, description and 
specification of the FOM; (ii) The Space Reference FOM. This 
is a set of computer-interpretable HLA IEEE 1516- 2010 FOM 
modules (XML files), intended for consumption by HLA 
runtime infrastructure and other software tools. 

The first draft version of the SRFOM focuses on handling 
of time and space; in particular, it provides the following: (i) a 
flexible positioning system using Coordinate Reference Frames 
for arbitrary bodies in space, (ii) a naming conventions for 
well-known Reference Frames, (iii) definitions of common 
time scales, (iv) federation agreements for common types of 
time management with focus on time stepped simulation, and 
(v) support for physical entities, such as space vehicles and 
astronauts. A description of these first outcomes can be found 
in [4] and [5]. In addition to the previously mentioned 
specifications, to fully promote and support a-priori 
interoperability between SRFOM-based federates, the PDG is 
working on the definition of rules and guidelines for the 
execution management and control of an SRFOM-based 
Federation. Note that the content of this paper is based on the 
current SRFOM standard draft [8]. In this context, this paper, 
after an overview of the SRFOM initiative (Section II), 
discusses the proposed solutions concerning the federation 
executive flow (Section III), initialization (Section IV), 
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execution (Section V), and mode transitions (Section VI). 
Conclusions are drawn and future work delineated in Section 
VII. 

II. AN OVERVIEW OF THE SPACE REFERENCE FOM 

The SISO Space Reference FOM (SRFOM) standard 
defines features to enable interoperability among HLA-based 
simulations (federations) in the Space domain [5]. This 
includes federations executing in real-time as well as 
federations executing in logical-time (including as-fast-as-
possible). The main objective of the SRFOM is to support 
training, analysis, mission development and engineering; 
although other types of usage, like test and concept 
exploration may also be supported to some degree.  

The SRFOM defines a hierarchy of object and interaction 
classes that are collected, according to their purposes, in 
separate FOM modules. This separation provides developers 
with a flexible and effective means for managing and extending 
the standard (see [4], [5]). Fig. 1 shows the architecture of the 
SISO Space Reference FOM along with its modules. 

 

Fig. 1: Architecture of the SISO Space Reference FOM.. 

 
The SISO_SpaceFOM_switches_module provides 

configuration settings for the Federation execution by way of 
global Federation execution wide switches for Local Run-Time 
Component (LRC) and RTI behavior. The IEEE 1516-2010 
standard defines a set of switches that shall be set in the FOM 
[3]. These switches regulate the behavior of some of the 
optional actions the RTI can perform on behalf of the federate, 
such as automatically requesting updates of an instance 
attribute when an object instance is discovered or advising the 
federates when certain events occur. To facilitate easy 
replacement of these settings, the switches have been confined 
to the SISO_SpaceFOM_switches_FOM module. It is expected 
that federations might choose to update this module based on 
their federation agreement. 

The SISO_SpaceFOM_datatypes module provides the 
definitions of: (i) HLA simpleDataTypes, for handling the main 
scalar physical quantities, such as Angle, Mass, MassRate, 
Velocity and Acceleration; (ii) HLA arrayDataTypes, for 
handling vectors physical quantities, such as position, velocity 
and acceleration; and, (iii) HLA fixedrecordDataTypes, for 
handling the space-time coordinates and states of reference 
frames. Moreover, the definition of the HLA logical timestamp 
and lookahead time are also provided (both are represented as 
64 bits integers: HLAinteger64Time). These data types are used 
for object attributes as well as interaction parameters and adopt 
the International System of Units (SI) wherever possible. 

The SISO_SpaceFOM_environment_module provides the 
fundamental data types used to represent the basic physical 
environmental properties associated with space-based 
simulations. In particular, it defines the ReferenceFrame HLA 
ObjectClass that represents a fundamental concept for 
representing when and where any physical entity exists in time 
and space. 

The SISO_Space_FOM_management module offers the 
specifications for execution control and management of HLA 
ObjectClass, InteractionClass and SynchronizationPoint 
instances. Specifically, it defines the base set of information 
necessary to coordinate federation and federate execution time 
lines and execution mode transitions in a SRFOM compliant 
federation execution. 

The SISO_SpaceFOM_entity module provides the 
definitions of a space vehicle through the definition of the 
PhysicalEntity ObjectClass that represents a man-made vehicle 
or a major sub-element of a man-made vehicle. The current 
definition of the PhysicalEntity ObjectClass is based on the 
prototype that has been used in the Simulation Exploration 
Experience (SEE) project [2][7] and that is going to be 
improved and extended during the standardization activity. 
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Fig. 2. Simplified Space Reference FOM Executive Flow [8] 

III. EXECUTION CONTROL OF AN SRFOM-BASED FEDERATION 

Every simulation has an executive that controls the 
execution of the simulation as it starts up, goes through a 
defined initialization sequence, transitions into various running 
states, and ultimately goes through a defined shutdown 
sequence. At some level, a distributed simulation (e.g. a 
federation execution) must go through analogous processes. 
Interoperability between federates in a federation execution 
requires not only the specification of the data exchange 
between federates but also the specification of executive 
behavior. With this in mind, the Space Reference FOM defines 
some specifics of the execution control required for a SRFOM 
compliant federate. 



At the highest level, the Space Reference FOM executive 
flow has four principal states: start, initialization, execution, 
and shutdown (see Fig. 1). This simplified view of the Space 
FOM executive architecture provides a suitable starting point 
for subsequent more detailed discussions. 

While the Start and Shutdown states are most likely trivial 
entry and exit points. The Initialization and Execution states are 
considerably more complex. The Space Reference FOM 
designates the role of the Master federate as the principal 
federate for controlling and coordinating the federation 
execution. The Master federate makes use of three principal 
HLA mechanisms to manage execution control: (i) Execution 
Control Objects; (ii) Mode Transition Request Interactions; (iii) 
Coordination Synchronization Points. 

A. Federation Time Management 

Before discussing the execution control mechanisms used 
in the context of the SRFOM, it is important to recall two 
principal time management concepts: 1) management of 
Simulation Scenario Time (SST) using HLA time management 
mechanisms and 2) management of the federation execution 
with respect to the real world passage of Physical Time (PT). 

Concerning the management of the Simulation Scenario 
Time Management (SST), the SRFOM relies on the HLA time 
management infrastructure for coordinating the SST 
progression across participating federates in a given federation 
execution. Federates that require time based coordination use 
the HLA Time Advance Request (TAR) and Time Advance 
Grant (TAG) mechanisms. This insures that all coordinated 
federates move forward with a coordinated SST. This helps to 
maintain consistent state information between participating 
time-managed federates. However, it does not regulate how fast 
the federation execution progresses with respect to PT. 
Simulations that are not paced with respect to PT will run as 
fast as possible (AFAP) base on the slowest executing time 
managed federate and the communication latencies between 
federates. The SRFOM supports two concepts for controlling 
the progression of SST with respect to PT: a Pacing Federate 
and Central Timing Equipment (CTE). These concepts are not 
mutually exclusive. 

A Pacing Federate is a federate in the federation execution 
that employs some kind of timed wait loop to regulate the 
progression of SST with respect to PT. This approach is often 
employed through the use of the Pacing Federate’s computer 
clock to “pace” the progression of SST with the computer’s 
concept of the progression of PT through the use of Computer 
Clock Time (CCT). The Pacing Federate employs this use of 
CCT and the SST management mechanisms described above to 
“pace” the federation execution. 

This method is very effective in managing the real-time 
progression of SST across a federation execution. However, 
there are limits to how well this approach can control the 
variation of SST progression with respect to PT across a 
federation execution. Specifically, the federation execution will 
progress in general coordination with PT but individual 
federates may have variations in the actual length and timing of 
each execution cycle. These variations are generally a result of 
the variability of communications latencies between federates 

and time management coordination implementations within the 
HLA Run Time Infrastructure (RTI). 

In situations where more accurate control is required for 
real-time performance of individual federates, the SRFOM 
supports the use of Central Timing Equipment (CTE). There 
are a number of available CTE technologies (standards). 
However, in general, CTE provides a highly accurate 
coordinated timing mechanism for each computer connected 
through the CTE. This provides each CTE equipped computer 
with a commonly available and highly accurate definition of 
CCT. The federate’s computer uses this CTE defined CCT to 
implement a time based wait loop to control the progression of 
SST with respect to PT. 

B. The Execution Configuration Object (ExCO) 

The Master federate is the principal control federate in the 
federation execution. The Master federate is responsible for 
coordinating and controlling the execution state of the 
federation through the use of a single instance of a published 
Execution Configuration Object named “ExCO” and a 
collection of mode transition synchronization points (see 
Section VI). 

An ExCO, as defined in the 
SISO_Space_FOM_management module (see Section II), is a 
standard HLA object class which defines the base set of 
parameters necessary to coordinate federation and federate 
execution time lines and execution mode transitions in a 
SRFOM compliant federation execution; these attributes are: 

 root_reference_frame: Specifies the name of the root 
reference frame in the federation execution's reference 
frame tree (see [5] for a discussion on reference frames 
and related data structures). This frame shall remain 
fixed throughout the federation execution. 

 scenario_time_epoch: This is the beginning epoch of 
the federation execution expressed in Terrestrial Time 
(TT), using the Truncated Julian Date (TJD) origin 
(1968-05-24 00:00:00 UTC) as the TT epoch.   This 
simulation scenario time (SST) epoch corresponds to 
HLA logical time (HLT) 0. All joining federates shall 
use this time to coordinate the offset between their 
simulation scenario times (SST), their simulation 
elapsed times (SET) and the HLA logical time (HLT). 

 current_execution_mode/next_execution_mode: This is 
the current/next running state of the federation 
execution in terms of a finite set of states expressed as 
an ExecutionMode enumeration value. 

 next_mode_scenario_time: This is the time for the next 
federation execution mode change expressed as a 
simulation scenario time (SST) reference. This value is 
only meaningful for going into freeze; exiting freeze is 
coordinated through a synchronization point 
mechanism. 

 next_mode_cte_time: This is the time for the next 
federation execution mode change expressed as a 
Central Timing Equipment (CTE) time reference. The 



standard for this reference shall be defined in the 
federation agreement when CTE is used. 

 least_common_lookahead: This is used in the 
computation to find the next HLA logical time (HLT) 
boundary available to all federates in the federation 
execution. This is used to synchronize federates in a 
federation execution to be on a common logical time 
boundary. 

C. The Mode Transition Request (MTR) Interaction 

The ModeTransitionRequest (MTR) interaction is used by 
participating federates, that are not the Master federate, to 
request a federation execution mode transition. An MTR can be 
sent at anytime during initialization or execution but only 
certain MTR requests are valid at certain times (see TABLE I. 
). The MTR contains one parameter, the execution_mode that 
can have one of the following 3 valid values: 
EXEC_MODE_RUNNING, EXEC_MODE_FREEZE, 
EXEC_MODE_SHUTDOWN. Of these three valid mode 
requests, only 7 combinations of current mode and requested 
mode are valid (see TABLE I. ). 

D. Coordinating Synchronization Points 

The Master federate uses a defined set of synchronization 
points to specify federate wide coordination points in the 
executive initialization and execution process flow. The Space 
Reference FOM specifies the following 6 execution control 
synchronization points; 4 are used during initialization (see 
Section IV) and 3 are used during execution mode transitions 
(See Section VI): 

 initialization_started: Used to indicate that the 
initialization phase of an SRFOM compliant federation 
execution has been started. This synchronization point 
(sync-point) is not created until all federates required 
by the master federate have joined the federation 
execution. Once this occurs, the master federate 
announces this sync-point for all federates that have 
already joined the federation execution. All federates in 
the sync-point group must achieve this sync-point prior 
to proceeding with federate and federation execution 
initialization. 

 initialization_completed: This synchronization point 
(sync-point) is registered by the federation execution 
Master federate after all the early joining federates 
have achieved the "initialization_started" sync-point. 
This signals to any late joining federates that they can 
now proceed to the current execution mode of the 
federation execution. This sync-point will never be 
achieved. 

 objects_discovered: This synchronization point (sync-
point) is used to mark the point at which all required 
objects have been discovered by all the federates taking 
part in the initialization process. This is necessary to 
insure the root reference frame is owned by or 
discovered by the federation execution Master federate 
prior to publishing and sending out the first update of 
the ExCO. 

 mtr_run/mtr_freeze/mtr_shutdown: These are used to 
synchronize the mode transition to 
EXEC_MODE_RUNNING, EXEC_MODE_FREEZE, 
and EXEC_MODE_SHUTDOWN respectively. These 
synchronization points (sync-points) are registered by 
the federation execution Master federate upon receipt 
of a valid MTR interaction after sending out the 
associated ExCO update. Upon receiving the ExCO for 
the mode transition and at the associated transition 
time, all federates must achieve the related sync-point 
prior to going into the specified mode; an exception  is 
represented by the transition to shutdown that does not 
involve the achievement of any synchronization point 
(see Section VI). 

IV. THE INITIALIZATION PHASE 

The complexity of an initialization process for a simulation 
can range from something as simple as setting initial simulation 
parameter values to the complex cyclic evaluation of initial 
conditions based on an iterative determination of state 
dependencies. The Space FOM initialization framework has to 
have the flexibility to support from simple to complex 
initialization methodologies. An overview diagram of the 
SRFOM initialization specification is shown in Fig. 3. 
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Fig. 3. Space Reference FOM Initialization Overview [8] 

 
The SRFOM initialization process begins with the Start 

entry point. The next step for any federate is to join the 
federation execution. The SRFOM specification for joining a 
federation execution is a multistep process with an iterative 
component to avoid a potential race condition. A flow chart of 
the Space FOM federation join process can be seen in Fig. 4. 
This process starts with connecting to the HLA Run-Time 
Infrastructure (RTI). Strange as it may seem, the next step is to 
attempt to destroy the federation execution. This is done to 
clean up any orphaned federation executions that might exist. 



The next step is to attempt to create the federation execution, 
ignoring a federation already exists error. The create will only 
succeed for the first federate. Next, join the federation 
execution. Note that there is a potential race condition between 
the creation of a federation and joining. If another federate 
comes in and destroys the federation execution before the 
current federate joins, a “Federation Execution Does Not Exist” 
exception will occur. If this occurs, the federate can loop back 
to the create step and try again. Once the federate has 
successfully joined the federation, the federate shall enable 
asynchronous delivery. 
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Fig. 4. Join Federation Process [8] 
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Fig. 5. Role Determination Process [8] 

 
The “Join Federation” step is followed by the determination 

of the role of the participating federate. A flow chart of the role 
determination process can be seen in Fig. 5. This step 
determines if a federate is a “Master” federate (as determined 
by the Federation Agreement), “Early Joiner” federate, or “Late 

Joiner” federate. The role of Early Joiner versus Late Joiner 
will be determined by the timing of the federate’s joining the 
federation execution and the federate’s designation of either 
being, or not being, a required federate. The list of required 
federates shall be documented in the federation execution’s 
Specific Federation Agreement. Any federate that plays a key 
regulatory role in the federation execution should be a required 
federate. By definition, both the Master and Pacing federates 
shall be required federates. 

If the federate is a required federate, then it will always be 
an Early Joiner. If the federate is not a required federate but 
joins into the federation execution before the Master federate 
discovers the last required federate, the federate will also be an 
Early Joiner. All other federates will be Late Joiners. 

Once a federate has determined its role, each federate will 
proceed to its designated initialization process: Master, Early 
Joiner, or Late Joiner. 

A. The Master Federate and Early Joiners initialization 

The Master federate has special responsibilities in the 
coordination and control of a Space FOM compliant federate 
execution initialization process. After creating and or joining 
the federation execution, the Master federate: (i) checks the 
state AUTO PROVIDE attribute in the Run Time Infrastructure 
(RTI), saves off the value, and then disables AUTO PROVIDE; 
(ii) subscribes to the Mode Transition Request (MTR) 
interaction. The Master federate then waits until all other 
required federates have joined the federation execution. All 
required federates and any other federates that join the 
federation execution prior to the last required federate will be 
designated as Early Joiner federates (see Fig. 5). The Master 
federate then begins to register and achieve specific 
synchronization points in a specific order to coordinate the 
initialization process. 

Immediately after the last required federate has joined, the 
Master federate registers the “initialization_started” 
synchronization point with only the currently joined federates; 
these are Early Joiners. The “initialization_started” 
synchronization point is used to mark the start of the 
initialization process and the point from which all subsequent 
joined federates are considered “late”. This eliminates a 
potential race condition for joining federates. Any other 
federates, not in the “initialization_started” synchronization 
point set, are designated to be Late Joiners. 

The Master federate also registers an “objects_discovered” 
synchronization point with only the Early Joiner federates. The 
“object_discovered” synchronization point is used to mark the 
point at which all required objects have been discovered by all 
the federates taking part in the initialization process. To support 
the multiphase initialization process, the Master federate will 
also register any federation execution specific multiphase 
synchronization points with only the Early Joiner federates. 
These synchronization points shall be documented in the 
federation execution’s Specific Federation Agreement. 

The next step in the Space FOM initialization process is to 
setup and initialize the HLA infrastructure needed by the 
Master federate to both operate as a federate and fulfill its 



responsibility as the coordinating authority for the federation 
execution (see Fig. 6). 

The Master federate begins by waiting for the 
announcement of the “initialization_started”, 
“objects_discovered”, and multiphase initialization 
synchronization points. The federate then sets up any needed 
RTI handles. The next step is publishing the Execution Control 
object (see Section III.B). 

The next step is to publish and subscribe any federate 
specific object classes. This will be followed by the reservation 
of all federate specific object instance names, waiting for the 
instance name reservation success or failure callbacks. At this 
point, the federate will register the federation specific object 
instances. The federate now waits for all required object 
instances to be discovered. Finally, the federate achieves the 
“objects_discovered” synchronization point and waits for 
synchronization. This insures that all objects required by those 
federates participating in early initialization have been 
discovered and that those federates will receive any updates for 
those object instances. 
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Fig. 6. Master and Early Joiner HLA Initialization [8] 

 
In order to protect against an ExCO mode transition race 

condition between the Master federate publish of the ExCO and 
the early joiner federates subscription to the ExCO, the Master 
federate shall not send an ExCO update prior to achieving 
"objects_discovered" synchronization point. 

In order to prevent a potential deadlock condition and to 
support shutdown at any time after the federation is 
synchronized on the "objects_discovered" synchronization 
point, all federates shall check for ExCO mode transitions in 

any wait loops. This includes waiting for Time Advance Grant 
(see Section V). 

In order to prevent potentially complex mode recovery 
schemes during initialization, no mode transitions other than 
EXEC_MODE_SHUTDOWN are allowed prior to completion 
of the early joiner initialization process (see TABLE I. ). 
Specifically, the Master federate shall not send an ExCO mode 
transition other than EXEC_MODE_SHUTDOWN prior to the 
registration of “initialization_complete” synchronization point. 

The Master federate is now ready to establish the federation 
execution simulation scenario time epoch and discover the 
federation execution’s root reference frame (see [5]). Once 
determined, the Master federate updates and publishes the 
ExCO with this information. Since the Early Joiner federates 
will wait on the ExCO update, the Master federate and the 
Early Joiner federates should be positioned to begin the 
multiphase initialization process that is a loop on a 
predetermined number of data exchanges between the Master 
federate and any Early Joiner federates.  

Having completed multiphase initialization, the Master 
federate will then setup HLA time management and 
synchronize the federation execution in preparation for 
transitioning to an execution state (see Fig. 7). At this point, the 
Master federate will achieve and wait for the 
“initialization_started” synchronization point. Now, the Master 
federate registers the “initialization_complete” synchronization 
point. This is a marker synchronization point. It should never 
be achieved by any federate. Any Late Joiner federates that 
have come in during the initialization process will get the 
announcement of “initialization_complete” and be released to 
start their initialization process. 
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Fig. 7. HLA Time Management, Synchronization and Trans. to Execution [8] 

 
 At this point, the Master federate checks for any 

ModeTransitionRequests (MTRs) received during 
initialization. If the MTR is valid then the Master federate 



proceeds according to the request (see Section VI), else if the 
MTR is not valid or no MTR is received during initialization, 
the Master federate sets the “next_execution_mode” in the 
ExCO to EXEC_MODE_RUNNING and updates the ExCO. 

An Early Joiner federate has an initialization flow similar to 
that of the Master federate.  Some notable exceptions are the 
processing of Mode Transition Request interactions and 
publishing ExCO updates (see Fig. 6 and Fig. 7). 

This marks the end of the initialization process: the Master 
federate and early joiner federates will then proceed according 
to the related execution mode (see Section VI). 

B. Late Joiner Federates 

Any federate that joins into the federation execution after 
the Master federate recognizes the last required federate and 
registers the “initialization_started” synchronization point is 
considered a Late Joiner (see Fig. 5) and then have to wait for 
the announcement of the “initialization_completed” 
synchronization point. This is a marker synchronization point 
that should never be achieved by any federate. Any Late Joiner 
federates that have come in during the initialization process 
will get the announcement of the “initialization_completed” 
synchronization point and start their initialization process. 

The Late Joiner initialization process is much like the Early 
Joiner initialization process but without the intermediate 
synchronization with the Master and there is no predefined 
multiphase initialization step. This makes the Late Joiner 
initialization process a shorter and simpler process flow, as 
shown in Fig. 8. 

Late Joiner 

Initialization

Publish and Subscribe Federate 

Object Class Attributes and 

Interaction Classes

Reserve All Federate Object 

Instance Names

Wait for All Federate Object 

Instance Name Reservation 

Success/Failure Callbacks

Register Federate Object 

Instances

Wait for All Required Objects to 

be Discovered

Setup RTI Handles

Subscribe Execution Control 

Object (ExCO) Class Attributes

Wait for ExCO Discovery

Request ExCO Update

Wait for ExCO Update Setup HLA Time Management

Query GALT and

Time Advance to GALT

Process Execution

ExCO Update

ExCO Mode 

Transition?

Run Mode?

Goto Run Goto Freeze Shutdown

No Yes

RUNNING

FREEZE

SHUTDOWN

 

Fig. 8. Late Joiner Initialization [8] 

 

V. THE EXECUTION PHASE 

Once initialization is completed, all federates transition into 
one of three possible execution modes: run, freeze, or 
shutdown. The general execution mode flow can be seen in Fig. 
9. Note that this is a general flow and that there will be 
differences between the execution flow between federates 
depending on their role in the federation execution and their 
capabilities. For instance, some federates might have Central 
Timing Equipment (CTE) while others do not. 

As with most simulation architectures, the Space FOM 
execution architecture is composed of executive looping 
constructs; in this case, two executive loops or modes: a 
execution mode and a freeze mode. A federate exits the 
execution phase by making a mode transition to shutdown. 

Once a federate enters execution mode, the federate enters 
into an execution loop that starts with waiting for a Time 
Advance Grant (TAG) to the last Time Advance Request 
(TAR) to a specific (current) federation HLA Logical Time 
(HLT) that will correspond to the current Simulation Scenario 
Time (SST). After receiving the TAG, the federate then 
performs any federate specific computation related to a running 
state. This is usually in the form of function calls (Run Jobs). 
Upon completion of the current SST computations, the federate 
makes a TAR to the HLT that corresponds to the next SST. If 
the federate is tied to a real-time clock, like a Pacing federate, 
the federate waits until the Compute Clock Time (CCT) 
reaches the time corresponding to the requested SST. In this 
case, the CCT may be either the computers clock or Central 
Timing Equipment (CTE). Finally, the federate checks if an 
ExCO update has been received with a valid mode transition 
during this run loop. If so, control returns to the mode selection 
process. If not, execution returns to waiting for the TAG to 
begin the next loop.  
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Fig. 9. Space Reference FOM Execution Overview [8] 

 



Once a federate enters freeze mode, the federate enters into 
an execution loop that starts by performing any federate 
specific computation related to a freeze state. The federate will 
remain in freeze mode until an ExCO update has been received 
and is processed to transition the federate to a different 
execution mode. Note: time does not advance when in freeze 
mode. However, the Computer Clock Time (CCT) will 
advance. This means that the CCT reference point with respect 
to the HLT and SST time lines will have to be reset. This 
applies to both internal computer clocks or Central Timing 
Equipment (CTE) based clocks. 

Once a federate enters shutdown mode, the federate 
performs any federate specific computation related to shutting 
down and then terminates. There are no mode transitions from 
shutdown mode. 

VI. MODE TRANSITIONS 

As shown in Fig. 1, an SRFOM compliant federate’s 
executive state can be characterized by two principal executive 
phases: initialization and execution. However, this 
characterization is a little too high level for a functional 
implementation. Indeed, an SRFOM compliant federate will 
exist in one of five (5) executive initialization or execution 
modes: uninitialized, initializing, running, freeze or shutdown. 
In general, the initialization mode transitions (uninitialized and 
initializing) are handled internally to each federate conditioned 
upon the role of the federate (Master, Early Joiner, or Late 
Joiner) and its’ progression through the initialization process. 
Specifically, the transition from uninitialized through 
initializing is gated by sync-points, ExCO updates and the 
progression of the federation execution through the SRFOM 
initialization process described in Section IV. In contrast, the 
execution mode transitions (running, freeze or shutdown) can 
be triggered through mode transition requests from any 
participating federate in the federation execution (see Fig. 9). 

Mode transitions are controlled using two principal 
mechanisms: ExCO attribute updates and MTR interactions 
(see Section III.B and III.C respectively). Any federate can 
request a mode transition by issuing an MTR interaction 
requesting a transition to another execution mode (running, 
freeze or shutdown). However, the Master federate may ignore 
an MTR if the federation execution state is not appropriate for 
it (see TABLE I. on [8]). A Master federate thus is the only 
federate that can control mode transitions using the ExCO 
singleton object instance in the federation execution specifying 
the mode transition that will be handled by the other federates. 

TABLE I.  MASTER MODE TRANSITION REQUEST VALIDATION MATRIX  
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ExCO Current Mode 

EXEC_MODE_UNINITIALIZED ignore ignore accept 

EXEC_MODE_INITIALIZING ignore accept accept 

EXEC_MODE_RUNNING ignore accept accept 

EXEC_MODE_FREEZE accept ignore accept 

EXEC_MODE_SHUTDOWN ignore ignore ignore 

VII. CONCLUSION 

With reference to the ongoing SISO Space Reference FOM 
(SRFOM) standardization initiative, this paper focuses on the 
main issues and proposed solution for managing and 
controlling an SRFOM-based federation execution. In 
particular, after discussing the basic mechanisms adopted by 
the standard for execution control (Execution Control Objects, 
Mode Transition Request Interactions, Coordination 
Synchronization Points) the executive flow of an SRFOM 
based federation is presented by describing in detail the 
initialization and execution phases along with execution mode 
transitions. The proposed solution for an effective federation 
execution control builds upon many years of simulation 
experience by professionals in government organizations, 
industry and academia. Early prototypes of these solutions have 
been tested in the SISO/SCS programs “Simulation Exploration 
Experience”. The SISO working group is going to promote and 
fully test the first release of the standard in ongoing projects 
involving worldwide organizations active in the Space domain 
(e.g. NASA, ESA, Roscosmos, and JAXA) where the SRFOM 
is expected to make collaboration politically, contractually and 
technically easier and, at the end, to fully enable a-priori 
interoperability in the Space domain. 
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